How to NEUTRALIZE Machine Learning based Anti-Malware Software

JunSeok Seo (boanproject) + JaeHwan Kim (Korea Univ)
2017. 7. 12
Who we are

• Jun-Seok, Seo (nababora)
 • Vice President of Boanprjoeect (start-up)
 • Study for Teaching – Vuln Analysis, IoT, ML, Malware
 • Interested in AI, ML, especially ‘adversarial ML’
 • nababora@naver.com

• Jae-Hwan, Kim
 • Researcher, Data Scientist
 • Interested in Machine Learning for data analysis
 • edenkim519@korea.ac.kr
Background

• We live in the data-driven world, everything is data
• We have no choice but to use ‘data’, ‘machine learning’, ‘AI’
• AI uses machine learning as a core engine
• Machine learning is de facto ultimate solution in information security...?!
• Can we fully trust decision made by machines?
What if ?!
ML in Information Security

• **Spam Filtering**
 - Based on probability of each word in e-mail contents

• **Network Traffic Analysis**
 - Find malicious traffic with anomaly detection

• **Incident Prevention & Response**
 - Find abnormal ‘PATTERN’ in data (system log, traffic, application log, etc)

• **Malware Detection**
 - What I am going to show you today
What is ML

- **Machine Learning is**
 - computers the ability to learn without being explicitly programmed
 - explores the study and construction of algorithms that can learn from and make predictions on data
 - It is just the way of drawing a line (what? how? where?)
ML Process

FEATURE is the key!
So, How to learn?

- Probability distribution
- Correlation Analysis
- Euclidean Distance
- Entropy
- Bayes Theorem
- BackPropagation
- ...

http://www.hongyusu.com/programming/2015/10/10/novelty-detection/
Adversarial Machine Learning

- **Adversarial Machine Learning is**
 - research field that lies at the intersection of ML and computer security
 - it aims not only to violate security, but also to compromise the learnability

- **Arms Race Problem**
 - arms race between the adversary and the learner
 - ‘reactive’ (security by obscurity) / ‘proactive’ (security by design)
Adversarial Examples

• **EvadeML:** forces a malicious PDF detector (ML) make wrong predictions
 - https://githubcom/uvasrg/EvadeML

• **AdversariaLib:** algorithms focused on sklearn and neural networks
 - http://pralab.diee.unica.it/en/AdversariaLlb

• **Explaining and Harnessing Adversarial Examples**
 - https://pdfs.semanticscholar.org/bee0/44c8e8903fb67523c1f8c105ab4718600cdb.pdf

• **Pwning Deep Learning Systems**
 - https://www.slideshare.net/ClarenceChio/machine-duping-101-pwning-deep-learning-systems
Examples: Spam Filtering

- Spam Filtering with ‘WORD’ probability

\[
P(\text{spam}|\text{penis}, \text{viagra}) \\
= \frac{P(\text{penis}|\text{spam}) \cdot P(\text{viagra}|\text{spam}) \cdot P(\text{spam})}{P(\text{penis}) \cdot P(\text{viagra})} \\
= \frac{24 \cdot 20 \cdot 30}{30 \cdot 30 \cdot 74} = 0.928
\]

- It’s black boxed, but

https://alexn.org/blog/2012/02/09/howto-build-naive-bayes-classifier.html
Attack Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>Causative</th>
<th>Exploratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted</td>
<td>Classifier is mis-trained on particular positive samples</td>
<td>Misclassifying a specific subset of positive samples</td>
</tr>
<tr>
<td>Indiscriminate</td>
<td>Classifier is mis-trained generally on positive samples</td>
<td>Misclassifying positive samples generally</td>
</tr>
</tbody>
</table>

- **on training phase**
- **on testing phase**
• Targeted Exploratory Integrity Attack (TEIA)

\[
A^* = \arg \max_{A \in \Phi(A)} FN(y_i, f(x_i)), \quad (x_i, y_i) \in A
\]

• It’s based on the ‘Game Theory’ - maximize the false negative

• condition: ‘the number of permitted queries is sufficiently large’

• but, can you understand this formula?

* False Negative - a test result indicates that a condition failed, while it was successful
Attack Taxonomy

Intuition, rather than formula
Attack Model

Causative

Exploratory
Adversary Knowledge

Zero Knowledge = only input and output
Adversary Knowledge

Testing / training Samples
Adversary Knowledge

Features
Adversary Knowledge

Architecture Scores
Adversary Knowledge

Hyper-Parameters
Training Tools
Adversary Knowledge

In the real world, none of them are available!
Can you find a sniper ?!
Adversarial Environment

- build own features, parameters, models as many as possible
- As if adversary has knowledge of ‘4 key factors’ (white-box)
- Only validation process is done in black-box environment

repeat until complete mission!
Malware Detection System

- virusshare
- malwr
- random

virustotal check

- pe header
- section info
- packer(yara)
- entropy
- n-gram
- image
- API
- Behavior

- benign.csv
- malware.csv
- benign_images
- mal_images

neural network
- svm
- random forest
- adaboost

- shuffle data
- cross-validation
- unseen sample

It will be uploaded to Github soon!
Feature Extraction

- Only focused on 32-bit PE malwares
Future Extraction

- **Metadata**
 - PE header + Section information
 - Total 68 features → Thanks to ClaMP(https://github.com/urwithajit9/ClaMP)
 - originally 69 features, 69\(^{th}\) is ‘packertype’ (one-hot encoding → 173 features)

ClaMP (Classification of Malware with PE headers)

A Malware classifier dataset built with header fields' values of Portable Executable files
Future Extraction

- **Code Pattern**
 - extract code pattern from disassembled code ← ‘code’ section
 - using n-gram analysis used in text-mining area: 4-gram

1-gram

```assembly
1: {mov, 6}
2: {int, 3}
3: {loop, 1}
```

4-gram

```assembly
1: {mov mov mov int, 1}
2: {mov mov int mov, 1}
3: {mov int mov mov, 1}
3: {int mov mov int, 1}
3: {mov mov int loop, 1}
3: {mov int loop mov, 1}
3: {int loop mov int, 1}
```
Future Extraction

- Image
 - PE file into image (gray scale)
 - file size is different – different image size → make thumbnail: 256 x 256
Modeling

Result

- Using 10-Fold cross validation
- 30000 malware samples / 4000 benign samples

Accuracy

<table>
<thead>
<tr>
<th>(80 / 20)</th>
<th>n.feat</th>
<th>SVM</th>
<th>R.F</th>
<th>Ada</th>
<th>DNN</th>
<th>CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>68</td>
<td>91.3 %</td>
<td>97.5 %</td>
<td>95.7 %</td>
<td>92.8 %</td>
<td>-</td>
</tr>
<tr>
<td>PE + Packer</td>
<td>173</td>
<td>91.8 %</td>
<td>99.8 %</td>
<td>99.8 %</td>
<td>93.8 %</td>
<td>-</td>
</tr>
<tr>
<td>N-gram</td>
<td>10000</td>
<td>87.3 %</td>
<td>99.9 %</td>
<td>100 %</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>Image</td>
<td>28 x 28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>99.8 %</td>
</tr>
</tbody>
</table>

MY TARGET!

1024 deep x 4 layer
Attack Scenario

mal & benign samples → modeling → ML model

adversarial module

extract features → ML model

load + virustotal

get_proba

repeat until complete mission!
Attack Process

• **Target**: randomforest and CNN(deep learning) model

1. Get probability of sample RandomForest
2. Get feature importance from randomforest
3. Feature analysis (divided into 4 class)
4. Overwrite output features and find critical point
5. Disguise a malware as a benign sample
6. Validation
Predict_proba

- scikit-learn provides `predict_proba` ← predict class probabilities
- adversary can estimate the impact of modification using this function

```python
def check_av(test, model):
    if model == 'rf':
        clf = joblib.load('./rf_model.pkl')
        prob = clf.predict_proba(test)
```
• using randomforest, you can get feature importance of all features

• there is no principle feature → top1 feature only has 12% importance

• so, just top 20 features are used for disguise

Feature Importance

1. feature 43 (0.125337). colname Subsystem
2. feature 66 (0.087313). colname E_file
3. feature 42 (0.065199). colname CheckSum
4. feature 7 (0.051913). colname CreationYear
5. feature 65 (0.048669). colname filesize
6. feature 28 (0.044226). colname AddressOfEntryPoint
7. feature 63 (0.039342). colname E_text
8. feature 64 (0.039096). colname E_data
9. feature 25 (0.038991). colname SizeOfCode
10. feature 30 (0.037704). colname BaseOfData
11. feature 38 (0.036354). colname MajorSubSystemVersion
12. feature 26 (0.035825). colname SizeOfInitializedData
13. feature 23 (0.030229). colname MajorLinkerVersion
14. feature 27 (0.029814). colname SizeOfUninitializedData
15. feature 67 (0.029394). colname fileinfo
16. feature 34 (0.025550). colname MajorOperatingSystemVersion
17. feature 5 (0.025085). colname e_lfanew
18. feature 55 (0.019832). colname SizeOfStackReserve
19. feature 6 (0.019508). colname NumberOfSections
20. feature 61 (0.017546). colname non_sus_sections
Feature Analysis

- draw **histogram, boxplot** from all feature vectors

- categorize features into four classes and compare them with importance data
 - distribution almost same / different number of outlier $\rightarrow 9 / 18$
 - different distribution $\rightarrow 4 / 7$
 - similar distribution $\rightarrow 7 / 19$
 - almost same $\rightarrow 0 / 24$
Overwrite Headers

• Just overwrite feature array (benign → malware) by each class from feature analysis

• for 100 percent probability malware sample (0 : 100)
 - just one class – probability changed to 90% (10 : 90)
 - two class – probability does not changed (still 10 : 90)
 - three class – probability dropped to 35% (65 : 35) ← bypass classifier!

\[
\begin{align*}
\text{benign: } & [1 0 1 0 1] \\
\text{malware: } & [0 1 0 1 0] \quad \rightarrow \quad \text{malware: } [1 0 1 0 1]
\end{align*}
\]
File modification

• overwrite extracted features ← meaningless!

• need to change the binary itself
 • **ok to overwrite** (39) – timestamp, checksum, characteristics, linker info, etc
 • **need to care specifications** (5) - entropy of whole file, sections, entrypoint, filesize

• After overwrite features from benign sample into malware sample (39 features)
 • Probability dropped 15 % (0 : 100 → 15 : 85)
 • **VirusTotal result** : 38 → 32 (what the ?!)
File modification

- I just wrote adversarial attack code for my own ML model, but ?!
- decided to keep checking the virustotal report 😊
File modification

- **Entropy** is a measure of unpredictability of the state, or equivalently, of its average information content.
- Entropy of file or specific section can be used as a feature for ML.
- It’s not a simple job to change entropy of a binary.
File modification

- fit malware’s entropy to benign sample

<table>
<thead>
<tr>
<th>DOS Header</th>
<th>NT Headers</th>
<th>Section Header</th>
<th>Section Header</th>
<th>.text</th>
<th>.data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOS Header</th>
<th>NT Headers</th>
<th>Section Header</th>
<th>Section Header</th>
<th>.text</th>
<th>injected byte</th>
<th>.data</th>
<th>injected byte</th>
<th>injected byte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOS Header</th>
<th>NT Headers</th>
<th>Section Header</th>
<th>Section Header</th>
<th>.text</th>
<th>injected byte</th>
<th>.data</th>
<th>injected byte</th>
<th>injected byte</th>
<th>fit code section</th>
<th>fit data section</th>
<th>fit whole file</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

benign

<table>
<thead>
<tr>
<th>DOS Header</th>
<th>NT Headers</th>
<th>Section Header</th>
<th>Section Header</th>
<th>.text</th>
<th>.data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

fit whole file
File modification

- After changed both 39 features info + entropy
- Virustotal detection dropped to 26!
File modification

- Actually, I didn’t count the impact of API malware used
- I’m curious, so packing the malware and same test again

<table>
<thead>
<tr>
<th>SHA256</th>
<th>175a67a36835740416f3813ac1ff1289ebf09c82ce4ab3e920d7be044a31acfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>파일 이름:</td>
<td>malware_upx.exe</td>
</tr>
<tr>
<td>탐지 비율:</td>
<td>25 / 61</td>
</tr>
<tr>
<td>분석 날짜:</td>
<td>2017-07-02 15:46:30 UTC (0분 전)</td>
</tr>
</tbody>
</table>

← detection rate dropped after simply packed original file

<table>
<thead>
<tr>
<th>SHA256</th>
<th>548658009b8ca21a8bd98c40271337208988664bed92610a87f022963cef3dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>파일 이름:</td>
<td>mal_new.exe</td>
</tr>
<tr>
<td>탐지 비율:</td>
<td>22 / 61</td>
</tr>
<tr>
<td>분석 날짜:</td>
<td>2017-07-02 15:47:34 UTC (0분 전)</td>
</tr>
</tbody>
</table>

← adversarial attack on packed file
Model Validation

• then, what about ‘wannacry’ malware sample?!

• pick a random sample from my dataset and query to virustotal

```text
<table>
<thead>
<tr>
<th>SHA256</th>
<th>3dcbb0c3ede91f8f2e9efb0680fe0d479ff9b9cd94906a86dec415f760c163e1</th>
</tr>
</thead>
<tbody>
<tr>
<td>파일 이름:</td>
<td>wanna</td>
</tr>
<tr>
<td>탐지 비율:</td>
<td>56 / 60</td>
</tr>
<tr>
<td>분석 날짜:</td>
<td>2017-07-03 00:11:27 UTC (1분 전)</td>
</tr>
</tbody>
</table>
```

• ok, let’s start 😊
Model Validation

- **first step** > after pass the binary to adversarial model (benign: procexp.exe)

 SHA256: 2a77be5e16763bedf46919edf22267f533465340aa9f213c28aaa2f1279698c3
 파일 이름: mal_new.exe
 탐지 비율: 39 / 61
 분석 날짜: 2017-07-03 10:13:03 UTC (0분 전)

 couldn’t bypass my ML model 😞

- **second step** > pass the binary(from first step) to my ML model

  ```
  (adv) C:
  Users
  nabab
  Desktop
  Secuinside
  dataset
  python 5
  mini
  ev
  aset
  procexp.exe
  C:
  Users
  nabab
  Desktop
  Secuinside
  dataset
  mal_new
  144,3,4,65535,184,280,5,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,76396,1,0,0,5,1,1,1,2727685,2,1,0,1,0,0,0,0,1,0,0,0,1048575,4,096,1,048576,15,2,710688,6,22477709774,1
  144,3,4,65535,184,248,4,0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,76396,1,0,0,5,1,1,1,2727685,2,0,0,0,0,0,0,0,0,0,0,0,1048576,4,096,1,048576,12,78576,6,30483512142,1
  63  mal:  6.51467471024  ben:  6.4770225325
  64  mal:  2.7421050432  ben:  2.58213215915
  66  mal:  6.30483512142  ben:  6.22477709774
  [[ 20.  80.]]
  It is MALware! bro
  ```
Model Validation

- **third step** > upx packing and adversarial model

  ```
  c:\users\nabab\desktop\se cuiinside\dataset\mal_new.exe
  144,3,4,65535,184,280,5,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,763904,192
  1,0,0,5,1,1,1,2727685,2,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1048576,4096,1048576,4096
  15,2710688,6,22477709774,1
  144,3,4,65535,184,248,3,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0,11,0,194560,403
  1,0,0,5,1,1,1,620899,2,1,0,0,0,0,0,0,0,0,0,1048576,4096,1048576,4096,1
  178736,4,45900084397,1
  63 mal: 7.55145641137 ben: 5.47702255325
  64 mal: 2.66181969728 ben: 2.69213215915
  66 mal: 4.45900084397 ben: 6.22477709774
  [[25. 75.]]
  It is MALware! bro
  ```

- **fourth step** > query to the virustotal (upx + adv)

 ![VirusTotal output]

  ```
  SHA256: 4fa41890ace494568f5c614ae05976a0690e2fbcf5c659c19aa072ec1fe76532
  파일 이름: mal_new.exe
  탐지 비율: 14 / 61  ❌ 탐지 비율: 58 / 60
  분석 날짜: 2017-07-03 00:19:43 UTC (0분 전)
  ```

 ???? BYPASSED ML BASED AV ~ yeah~ 😊
Adversarial Deep Learning

• If AV use deep learning to classify malware

• Candidate model
 - **DNN** – nothing different than other machine learning algorithm (just deep neural network)
 - **CNN** – using binary image as features
 - **RNN(api sequence)** – using behavior analysis, extract api sequence info from executing

• **main idea** – add garbage byte to the end of the binary. That’s it!
Summary

• develop adversarial model just using static features (PE metadata)
• even build your own model → doesn’t tell you the exact answer
• UPX can be used as a camouflage tool
• extract as many features as you can → lead to robust adversarial model
• adversarial model can affect traditional av software (signature based)
Future work

- **Expand Feature Vector** – API, behavior information
- **Reinforcement Machine Learning Model** – automatic adversarial attack
- Virustotal Detection Rate ‘Zero’
- **Develop adversarial testing framework for anti-virus software**
References

• Can Machine Learning Be Secure? - Marco Barreno et al
• Adversarial Machine Learning – J.D. Tygar
• Adversarial and Secure Machine Learning – Huang Xiao
• Adversarial Reinforcement Learning – William Uther et al
• Adversarial Machine Learning – Ling Huang
• Adversarial Examples in the physical world – Alexey Kurakin et al
• Adversarial Examples in Machine Learning – Nicolas Papernot
• Explaining and harnessing adversarial examples – Ian J. Goodfellow et al
• Machine Learning in adversarial environments – Pavel Laskov et al
Thank you

any question? nababora@naver.com